Contributing to “the Michigan Difference”

MESSAGE FROM THE EXECUTIVE DIRECTOR

Now more than ever, the University of Michigan is making a difference in the quality of life and economic progress for people in and beyond the state of Michigan. With its tradition of research and academic excellence, the University has the resources to build a culture of innovation, creativity and entrepreneurship. And U-M Tech Transfer is part of this great story, assisting inventors and business partners in bringing the benefits of research to our communities.

In FY06, U-M Tech Transfer achieved a record 97 technology agreements, linking innovations to the marketplace. This included nine new business startups based on U-M technology, eight of which are located in Michigan. During the past six years, U-M has spun out 55 new business startups, creating jobs and economic opportunity. In FY06, our equity position in startups contributed significantly to a record $20.4 million in license revenues. Much of these revenues are reinvested in research and education, fueling further innovation.

We take pride in our contribution to regional economic development. Working with community partners such as Ann Arbor SPARK, we are supporting development efforts to grow new and existing businesses, assisting educational programs to nurture our talent, and creating programs and events to build our entrepreneurial ecosystem. In collaboration with business, government, and community partners, we are enhancing the vitality of our region and state, developing opportunities for growth, and improving the quality of life within our communities.

We have accomplished a great deal. But there is so much more to do. We are proud that the people, technologies and resources of the University of Michigan are contributing as never before. And we invite you to join us in realizing the potential that lies within “The Michigan Difference.”
THE MISSION of U-M Tech Transfer is to effectively transfer University technologies to the market so as to generate benefits for the University, the community, and the general public.

U-M TechTransfer

ABOUT

The pursuit of excellence in research at the University of Michigan often yields exciting discoveries that bring significant value to society, addressing issues of health, productivity and quality of life. The process of tech transfer is focused on transferring these discoveries, often immature but full of promise, to capable commercial partners with resources and expertise.

This process requires creativity, skill and perseverance. It is not easy to evaluate early stage discoveries for technical and market potential, to construct a commercial strategy around emerging applications, to invest scarce dollars to protect those ideas, and to link them with a committed and capable licensee. But these challenges and the ultimate rewards drive our pursuit of excellence. Tech Transfer assists inventors in the pursuit of their vision: fostering long-term relationships with business partners and bringing the fruits of research to bear on the needs of society.

“Tech Transfer assists inventors in the pursuit of their vision...”

The goal of U-M Tech Transfer is to provide our faculty researchers with a wide range of professional and responsive services. Our staff provides efficient mechanisms to assess, protect, market and license technologies, delivered with highly tailored plans to best serve our technologies and our inventors. We provide business formation consulting for promising new business startup concepts, with staff members providing hands-on assistance and links to market and funding specialists. We invest in “gap funding” opportunities, often leveraging State of Michigan and other 3rd party matching funds, to answer critical commercialization questions. And we engage our student community through hands-on learning opportunities. We take great pride in our U-M TechStart intern program, in which graduate students from business, engineering, medicine, law, public health and other schools work in small teams on tech transfer projects. This results in valuable learning experiences, assistance for our projects and encouragement for local employment after graduation. We are also focused on building and using social networks, linking opportunities to capable business partners who can help us achieve success.

why do tech transfer?

- increase the likelihood that new discoveries and innovations will lead to useful products, processes and services that benefit society
- facilitate new research collaborations and resource exchanges with industry, thereby providing unique opportunities for faculty and students
- increase the flow of research dollars and resources to the academic community
- provide incentives for faculty to broaden and deepen the scope of their research
- help to attract and retain highly qualified faculty and students
- enrich the educational experience through student internships and work-study opportunities
- leverage business partnerships to stimulate local and regional economic development
- enhance the reputation and stature of the University

“The University of Michigan is one of the largest and most successful research organizations in the world. We are located in a region that has made many of the significant contributions to the prosperity of our nation during the last century. Currently, the economic underpinnings of our region are undergoing significant change as the emphasis on a knowledge-based economy becomes increasingly important. The University, through its spin-offs, licenses and multitude of industrial interactions, is an enormously important resource to the region and the nation. In the years ahead, technology transfer will play an essential role in the transformation of our regional economic base.”

STEPHEN R. FORRESTER, Vice President for Research, University of Michigan
2006 fiscal year

RESULTS | Fueled by the remarkable innovations of our research community, we continued our strong progress in invention disclosures, licenses, startups and revenues. More importantly, new products and services are reaching the marketplace along with new and strengthened relationships to accelerate innovation.

All are tangible proof that the University of Michigan is contributing greatly to economic vitality and our quality of life.

“A 12% increase in agreements is only part of the story.... We are also very excited about the terrific potential of our FY06 agreements given the expertise, resources and motivation of our licensing partners and the quality of the technologies being licensed.”

Robin Rasor | Director of Licensing
U-M Tech Transfer

THE START-UP CLASS OF 2006

MedSpoke
organ transplant information system

Cielo MedSolutions
software and IT services for primary care health providers

SensaGen
diagnostic to detect early kidney disease

Compendia Bioscience
molecular oncology tools, data, and analysis software

Zattoo
global virtual cable network bringing live TV to the Internet

NanoMag
grain refinement technology for magnesium and other metals

CastAnalysis
fly casting training aid using MEMS gyros and software

Pipex
developing treatments for neurologic, fibrotic and inflammatory disease

Cyclos Semiconductor
ultra-low-power semiconductor chips
advancing research with high-performance tools

ACCURI CYTOMETERS | Flow cytometry is a laser-based technology that makes it possible to screen thousands of cells for multiple characteristics in a matter of seconds. The information can be used to study, diagnose and monitor a wide array of diseases—from AIDS to cancer. But with an average price tag of $100,000, cytometers have been out of reach for most research scientists.

“Our goal is to make flow cytometers ubiquitous and to expand the number of researchers who use them on a daily basis,” says Jennifer Baird, president and CEO of Accuri Cytometers, Inc. In late 2004, along with partner Collin Rich, Baird licensed flow cytometer technology developed by U-M Associate Professor of Engineering Steven Skerlos. The company began operation with $800,000 from angel investors. Since then, Accuri has been working to optimize the design of their product.

“Every system—fluidics, electronics, optics—has been redesigned with an eye to high performance, robustness and value,” Baird notes. “We’ve overcome every barrier in terms of cost and complexity.” The result is a new-generation cytometer that weighs 30 pounds as opposed to 300, can be up and running within one hour rather than requiring five days of training, and outperforms competitive instruments that cost five times as much.

According to Baird, Accuri has benefited tremendously from local resources ranging from software development firms and technical advisors to electrical engineers. “The role of Tech Transfer has also been critical to our success,” Baird says. “They shared their technology portfolio, secured gap funds to accelerate commercialization readiness, and introduced us to someone who is now a valued member of our executive staff. And they continue to make us aware of new funding opportunities, such as the state of Michigan’s 21st Century Job Fund.”

“The New Business Development team in U-M Tech Transfer brings the right people together with the technology and inventor, and provides resources and guidance to create viable product and business concepts.”
Karen Studer-Rabeler | Associate Director
New Business Development | U-M Tech Transfer

scoping out the future of internet television

ZATOO: TV TO GO | During the months of June and July, with the World Cup Soccer Championship underway, millions of fans were glued to their television sets. But in Switzerland, soccer aficionados could tune in to the games almost anytime and anywhere from their laptop computers.

This real-time “mobile” viewing technology, currently being offered in Europe through a University of Michigan start-up called Zattoo, was created by U-M Associate Professor of Computer Science Sugih Jamin (above right), his research assistant Wenjie Wang, and several U-M undergraduate students. Known as peer-to-peer Internet protocol television—or P2P IPTV—the live video streaming protocol represents a vast improvement over file downloading or existing methods of presenting video content. The technology behind Zattoo is designed to provide high-quality video, and to do so with minimal skipping and broken streams. In addition, the peer-to-peer technology allows for improved audience targeting while at the same time helping to insure against piracy, since no part of the encrypted video is stored on the network.

“Our immediate goal is to create a global virtual cable company. We want to make it possible for almost anyone to put up streams on the Internet.”

“The Zattoo technology actually began seven or eight years ago as a research project,” Jamin explains. “Initially, it was used to broadcast university conferences.”

In March of 2005, Jamin and longtime friend Beat Knecht (above left) decided to bring the technology to market. The team won a business plan competition in Switzerland and connected with angel funders.

In June of this year, the company began offering its Internet TV service in Switzerland. Through a carefully phased strategy, the team plans to add channels, expand throughout Europe and attract venture capital funds, with the assistance of U-M Tech Transfer. Currently, Zattoo is based in Ann Arbor, with corporate offices in San Francisco and Zurich, Switzerland.

“This technology is revolutionary,” Jamin says. “Our immediate goal is to create a global virtual cable company. Eventually, we want to make it possible for almost anyone to put up streams on the Internet.”
Visitors to the University of Michigan’s Exhibit Museum are drawn to the Buesching Mastodon. “This mastodon’s stance,” explains Fisher, “is considerably more dynamic than is seen in most previous mounts. Recent research has highlighted just how active, even aggressive, these animals were.”

The new mount of the Buesching Mastodon reimagines the roughly 270 highly-detailed bones of the original skeleton, each molded and cast by Fisher and the students, staff, and volunteers working with him over a period of two years.

brining mastodons to life

DANIEL FISHER

Approximately 12,000 years ago, in what is now northern Indiana, a 33-year-old mastodon died from wounds sustained in mortal combat with another male. Buried in a peat bog, the creature’s bones remained undisturbed until 1998, when farmer and businessman Dan Buesching accidentally unearthed part of the skull. Today, thanks to the work of U-M Professor Daniel Fisher and other paleontologists, the skeleton—remarkably preserved and almost nearly complete—is making important contributions to our understanding of life on this planet.

At the request of the Buesching family and colleagues from Indiana University-Purdue at Fort Wayne, Fisher helped supervise the excavation and worked on preserving the remains—particularly the tusks. As he explains, “These incisors, which grow throughout the life of the animal, are an incredible source of information. They can tell us everything from the mean annual temperature to the animal’s age, gender, changing health status, reproductive history, and season of death.”

Fisher adds that excavations such as this one can also contribute to solving an important mystery. “Roughly 10,000 years ago, North America lost about three-quarters of its large mammals,” he says. “By studying skeletal remains like the Buesching Mastodon, we hope to discover the causes for that mass extinction.”

In cooperation with Tech Transfer, the Buesching family entered into a unique agreement with the University of Michigan. Under the terms of the agreement, the University is creating research-quality molds of the skeleton. The resulting casts will be used for scientific and educational purposes and the Buesching family will receive royalty payments for any cast sold to outside organizations. As Fisher points out, “It’s an excellent way to secure a rare and important scientific record for the public.”

“With our products, municipalities and commercial water testing firms can profile any water system in a matter of minutes.”

SENSICORE

In the late 1990s, U-M Professor of Engineering Richard Brown and post-doctoral students Geun Sig Cha and Hakhyun Nam developed a hand-held chemical analyzer. Their goal was to replace the time-consuming wet chemistry used for blood analysis with lab-on-a-chip technology capable of yielding real-time measurements. In early 2000, with the help of U-M Tech Transfer, Brown teamed up with Ann Arbor-based Ardesta LLC, a leader in commercializing small-tech products.

With $1 million in seed money, Brown and Rick Snyder, Ardesta board chair and former President and COO of Gateway Inc., launched Sensicore to explore commercial applications and to market the technology. At the recommendation of consultant Malcolm Kahn, who became CEO of Sensicore in 2004, the company shifted to environmental applications and discovered that its analyzer was ideal for water sampling.

As Kahn explains, “Monitoring municipal water supplies has always been a huge challenge. Contamination can occur virtually anywhere along a vast network that runs from reservoirs and treatment plants to distribution channels. Manual water sampling—which has been the norm for decades—can take as long as 45 minutes for a single site. That’s why most cities have tended to focus on problem solving rather than safeguarding and troubleshooting. With our products, municipalities and commercial water testing firms can profile any water system in a matter of minutes.”

Sensicore currently offers two products, both launched in March of 2006 after extensive beta testing in cities nationwide. The WaterPOINT™ 870 analyzer is a hand-held device that screens for 18 critical measurements—ranging from pH and hardness to ammonia and monochloramine—in about four minutes. (Conventional methods that perform only single tests can take as long as 45 minutes.) Customers can then use Sensicore’s web-based WaterNOW™ Information Solution to view and monitor the status of their entire water infrastructure in real-time.

“The technologies that researchers are investigating in the labs at the University of Michigan have the potential to change our lives for the better. It’s our job to encourage, develop and connect with resources to transform them into commercial successes.”

Dan Broderick | Director
Engineering-OTTC | U-M Tech Transfer
unraveling the mysteries of a deadly disease

DAVID GINSBURG

Approximately one in every million babies is born with a life-threatening blood disorder known as TTP (thrombotic thrombocytopenic purpura). More often, though, the disease strikes otherwise healthy people in their twenties and thirties. As platelets are mysteriously shredded, clots develop in every blood vessel. Major organs fail. Without proper diagnosis and treatment, 90 percent of all victims die in a matter of days. Presently, the only thing that can save those with TTP is ongoing blood plasma transfusions.

For nearly 30 years, Howard Hughes Medical Institute investigator and U-M Medical Professor David Ginsburg has been studying TTP and other blood clotting disorders. In the 1980s, Ginsburg and Washington University School of Medicine research scientist J. Evan Sadler independently cloned the gene for von Willebrand factor (VWF), a protein actively—and often disastrously—involved in hemophilia, TTP, and other blood diseases.

Since then, Ginsburg and his research team, currently based in the U-M Life Sciences Institute, have been analyzing blood samples from families with a history of TTP. Their work led them to the discovery that this disorder is triggered by defects in a single gene that normally controls VWF. Based on that breakthrough, M.D.-Ph.D. student Gallia Levy was able to map the gene with the help of William Nichols, one of Ginsburg’s former students. Working with Tech Transfer, Ginsburg and Levy received a patent relating to methods of diagnosing TTP, which involves detecting a mutant gene known as ADAMTS13.

As Ginsburg notes, “The mapping of ADAMTS13 is very satisfying because it means that we can now produce a recombinant protein with real therapeutic potential—something that can be used as the basis for both diagnostic testing and treatment. I’m hopeful that Baxter Pharmaceuticals, which recently licensed the technology, will soon be able to bring new life-saving products to market.”

improving the flow of diagnostic information

HANDYLAB

Every year in the U.S., as many as four million expectant mothers are tested for Group B Streptococcus (GBS) during their final week of pregnancy. Approximately 20 percent of them carry the pathogen, which is the leading cause of sepsis, pneumonia, and meningitis in newborns. If the bacteria is detected quickly enough, both mother and fetus can be treated with intravenous antibiotics. Unfortunately, traditional lab cultures take anywhere from 36 hours to four days—often making prompt treatment impossible.

But all that will change sometime in 2007, thanks to a diagnostic lab-on-a-chip produced by Ann Arbor-based HandyLab. Using a small disposable cartridge and portable analyzer, health care professionals will be able to test for GBS in less than an hour. Other applications may soon follow—including on-site testing for chlamydia and gonorrhea. In collaboration with DuPont, HandyLab researchers are also developing prototypes for detecting E. coli, listeria, and other food-borne bacteria as well as anthrax and plague.

The original platform technology, created in the labs of U-M Professors Dr. Mark Burns (Chemical Engineering) and Dr. David Burke (Human Genetics), was further advanced by former U-M graduate students Kalyan Handique and Sundararsh Brahmasandra. In 1998, their microchip-based device was named one of the top inventions of the year by Science Magazine. HandyLab was launched in 2000, and the product has seen several design revisions since that time.

“Our rapid assay technology has evolved considerably since then,” says President and CEO Jeffrey Williams. “The cartridge is slightly larger and now performs 60 separate functions relating to DNA analysis. Tech Transfer has provided us with valuable assistance and encouragement. It’s been a very helpful ongoing relationship.”

Currently, while awaiting final FDA approval, HandyLab is focusing on its marketing and manufacturing functions. The company recently generated $11.5 million in C-Round Funding and received an additional $5.6 million from Pitzer, one of its strategic investors.

“Our rapid assay technology has evolved considerably...”
harnessing the ocean’s energy

THE VIVACE CONVERTER In 1504, Leonardo da Vinci observed that ropes suspended between buildings emitted a faint, high-pitched sound—what he called Aeolian Tones. Without realizing it, he had discovered vortex-induced vibrations (VIV). This natural phenomenon, which occurs whenever a flexible cylinder is exposed to a flow of air or water, can cause serious damage to cables, mooring lines, marine pipelines, smoke stacks, nuclear fuel rods, and thousands of other structures.

For 27 years, naval architect and marine engineer and U-M Professor Michael M. Bernitsas has looked for ways to suppress VIV and the damage it inflicted on marine structures, particularly the marine risers of offshore drilling platforms. Then one day, while describing his work to a PhD student, he had a revelation: Why not use VIV to extract energy from bodies of water? Why not try to enhance VIV instead of suppress it, and harness it to solve the world’s looming energy problem?

Within one year, Bernitsas had developed the idea and filed for a patent relating to VIVACE (Vortex Induced Vibrations Aquatic Clean Energy), a device capable of harnessing the VIV energy generated by ocean and river currents. Subsequent tests in U-M’s Marine Hydrodynamics Lab proved that VIVACE was remarkably efficient at generating usable energy—more efficient than ocean-energy converters currently being used around the world.

“VIVACE satisfies all Department of Energy requirements,” Bernitsas says. “It doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

Within one year, Bernitsas had developed the idea and filed for a patent relating to VIVACE (Vortex Induced Vibrations Aquatic Clean Energy), a device capable of harnessing the VIV energy generated by ocean and river currents. Subsequent tests in U-M’s Marine Hydrodynamics Lab proved that VIVACE was remarkably efficient at generating usable energy—more efficient than ocean-energy converters currently being used around the world.

“As pictured here, the converter consists of a rigid cylinder, struts and springs, a generator and a transmission belt. By linking tens or hundreds of these converters together, it becomes possible to create an underwater power plant capable of producing enough inexpensive, environmentally friendly electricity to power a city.”

While describing his work to a PhD student, Bernitsas says, “VIVACE doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

Last year, Bernitsas founded Vortex Hydro Energy, LLC to develop, prototype and market his invention. As he notes, “Tech Transfer has been immensely helpful at every stage: filing the provisional patent application, finding test sites, locating funding sources, and staffing the company.” Most recently, Bernitsas has worked with student-consultants from U-M Tech Transfer’s TechStart program to identify potential investors.

“VIVACE uses vortex-induced vibrations created by ocean currents to generate electricity. As pictured here, the converter consists of a rigid cylinder, struts and springs, a generator and a transmission belt. By linking tens or hundreds of these converters together, it becomes possible to create an underwater power plant capable of producing enough inexpensive, environmentally friendly electricity to power a city.”

More recently, Bernitsas has worked with student-consultants from U-M Tech Transfer’s TechStart program to identify potential investors.

“VIVACE doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

The Laine group has developed completely different sets of products including the first nano-sapphire powders. These powders could lead to more efficient street lights and lasers, and stronger hip and knee implants.”

“VIVACE doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

“VIVACE doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

The Laine group has developed completely different sets of products including the first nano-sapphire powders. These powders could lead to more efficient street lights and lasers, and stronger hip and knee implants.”

“VIVACE doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

“VIVACE doesn’t interfere with navigation, nor does it damage marine life in any way. It is modular, flexible, portable, and mechanically simple.”

As an extension of this technology, the Laine group discovered a way to dissolve the silica in rice hull ash to produce “perfect” molecular silica nano building blocks. As he notes, “These molecules are exactly one nanometer—or one billionth of a meter—in diameter to which can be attached eight organic groups giving novel 3-D molecules that can be assembled nanometer by nanometer for use in an enormous number of applications.” Mayaterials was launched in 2003 to market the resulting “cubes” or nano organic/inorganic hybrids.

Laine’s newest venture, Nano-Alpha, is an unexpected off-shoot of the original nanopowder combustion technology. By taking the originally produced nanopowders and “reshooting” them in the flame, the Laine group has developed completely different sets of products including the first nano-sapphire powders. These powders could lead to more efficient street lights and lasers, and stronger hip and knee implants.
A Far-Reaching Mission
According to Forrest, the Institute will function as “a nucleating agent.” He points out that all of the factors necessary for success already exist within the University community.

“Right now, the University of Michigan has clear strengths in a multitude of areas. In terms of science and technology, we’re ranked number one nationally in nuclear engineering, and we have tremendous resources in automotive engineering, low-power-consumption electronics and hydrogen. Our faculty are making huge strides in solar energy, energy storage, and room illumination. We also have superb expertise in the social sciences, economics, public policy, and public health. In addition, we have access to industry leaders, including every major automotive manufacturer, as well as considerable experience and success in technology transfer. Once we begin to make linkages and combine existing strengths, the University of Michigan is destined to play a leadership role in providing real solutions for our nation’s energy problems.”

Although still in early-phase development, MMPEI is making rapid progress. Under the guidance of its newly appointed director, Professor of Nuclear Engineering Gary Was, the Institute will host two symposia during the 2006-07 academic year to encourage seed funding and provide a forum for energy-related issues on campus.

“Creating viable new energy sources is one of the most important challenges now facing our nation and our world. The University of Michigan is prepared to lead that effort. In fact, given our unique set of resources, we have a responsibility to transform ideas into reality.”

Stephen R. Forrest | Vice President for Research

THE MICHIGAN MEMORIAL PHOENIX ENERGY INSTITUTE

As a leading research institution, the University of Michigan has both the capability and the responsibility to address the most serious challenges facing humankind. Poverty, environmental degradation, terrorism, disease, overpopulation…the list is long. But few would disagree that one of the largest and most urgent problems is energy: developing alternative fuels to power our planet.

“Today, the demand for energy has never been greater or more competitive. Yet the fossil fuels that have powered our world for centuries are dwindling, and international experts predict that global oil production will peak as soon as 2007. In response, U-M has made energy one of its top research priorities.

fueling the future

“A new energy source has never been more necessary than now. U-M’s new Institute is an important step toward solving a long-term problem.”

THE UNIVERSITY OF MICHIGAN IS ONE OF THE FEW INSTITUTIONS WORLDWIDE THAT HAS BOTH THE BREADTH AND DEPTH OF EXCELLENCE TO MAKE A SIGNIFICANT AND BROAD IMPACT ON ENERGY SCIENCE, TECHNOLOGY, AND POLICY,” Forrest says. “This new institute is galvanizing the entire University community around issues related to energy.”

The mission of this new entity was to study how the University could leverage its expertise and resources in energy-related research activities. In June of 2006, MERC recommended the creation of “a university-wide enabling organization that would facilitate multidisciplinary research, seed the growth of emerging research areas, and advocate for Michigan’s energy-related activities, both within and outside the University.” This work culminated in the rebirth of the University of Michigan’s famed Phoenix Project.

Since the 1950’s, the University of Michigan has been home to the Memorial Phoenix Project, dedicated to the peaceful use of nuclear energy. The centerpiece of this facility, the Ford Nuclear Reactor, was recently decommissioned. Appropriately, the building will soon become the headquarters of the new Michigan Memorial Phoenix Energy Institute. In addition to offices, meeting and conference facilities, and faculty labs, the third floor of the building will be occupied by the U-M Hydrogen Research Center.

Building on a Solid Foundation

In the Fall of 2003, U-M Emeritus President James Duderstadt and a small group of faculty were asked to explore how Michigan could expand its promising work in hydrogen generation, storage, and use. The size and scope of the committee continued to grow until, 18 months later, it was reconfigured as the Michigan Energy Research Council (MERC).

The mission of this new entity was to study how the University could leverage its expertise and resources in energy-related research activities. In June of 2006, MERC recommended the creation of “a university-wide enabling organization that would facilitate multidisciplinary research, seed the growth of emerging research areas, and advocate for Michigan’s energy-related activities, both within and outside the University.” This work culminated in the rebirth of the University of Michigan’s famed Phoenix Project.

New Life for the Phoenix

Since the 1950’s, the University of Michigan has been home to the Memorial Phoenix Project, dedicated to the peaceful use of nuclear energy. The centerpiece of this facility, the Ford Nuclear Reactor, was recently decommissioned. Appropriately, the building will soon become the headquarters of the new Michigan Memorial Phoenix Energy Institute. In addition to offices, meeting and conference facilities, and faculty labs, the third floor of the building will be occupied by the U-M Hydrogen Research Center.

energy research

U-M FUNDING TOTALS
$34.9M IN 2005

Vehicle propulsion $13.5M
Hydrogen & Fuels $8.3M
Nuclear $5.3M
Fuel Cell $2.5M
Other $4.2M
Battery $1.1M
innovation relationships

Relationships drive performance. To that end, we are focused on broadening and deepening our relationships with researchers, industry partners, the funding community, alumni, students, university peers and community leaders. We feel our mission must extend beyond the formal duties of technology licensing in order to provide true leadership in innovation and economic growth. A new industry relationship may produce a technology license, but it may also lead to exciting new research collaborations, a student job placement, consulting assistance to ignite business growth or new insights that enhance our ability to teach. We also feel a commitment to give back to our community and our profession, with programs, activities and leadership roles.

ANN ARBOR SPARK Ann Arbor SPARK has expanded its capabilities in FY06, led by new President Michael Finney. SPARK’s mission is to advance the economic development of innovation-based businesses in greater Ann Arbor. U-M President Coleman led its inception and the University continues to play a leadership role on the Board of Directors, Executive Committee, officer positions and by providing hands-on assistance with day-to-day operations. Ann Arbor SPARK activities include a highly-praised Entrepreneur’s Bootcamp, assistance to innovation companies, resourcing of talent, and marketing efforts to attract resources to our region and state.

TECHSTART TechStart is an internship program created and managed by U-M Tech Transfer, partnering with the U-M Zell-Lurie Institute for Entrepreneurial Studies. Each summer, graduate students from engineering, business, medicine, information, law and other schools work on selected tech transfer projects with the active mentoring of our tech transfer staff and community advisors. The result is an impressive learning experience, engaged assistance for our tech transfer efforts, and encouragement for local employment opportunities for these students after graduation.

MENTOR NETWORK With encouragement from our National Advisory Board, U-M Tech Transfer is forming a mentor network to expand our pipeline of experienced advisors who can assist our projects and businesses. With roles ranging from providing periodic advice to more extensive coaching and hands-on assistance, the Mentor Network provides a great opportunity for engaging alumni, experts and partners to accelerate tech transfer.

NATIONAL ADVISORY BOARD

Our U-M Tech Transfer National Advisory Board consists of leading venture capitalists, corporate executives, successful entrepreneurs and university and community leaders who, together, represent a broad range of industries, regions and expertise. The National Advisory Board provides strategic guidance and resource connections to accelerate our progress in technology transfer. Board members play an active role with committee assignments that have included benchmarking the best practices of regions, critiquing and advising our operations and interactions, and providing industry, investment and market trends.

Board members in FY06 include:

- Thomas Bumol Vice President - Biotechnology Discovery Research Eli Lilly
- Marshall Cohen Vice President and General Manager Sensura Unlimited Goodrich Corp.
- John Denniston Partner Kleiner Perkins Caufield & Byers
- Richard Douglas Senior Vice President Corp. Development Genzyme
- Michael Finney CEO and President Ann Arbor SPARK
- Farnam Jahanian Professor of Electrical Engineering and Computer Science University of Michigan
- Thomas Kinnefear Executive Director Zell Lurie Institute for Entrepreneurial Studies
- Edward Pagani Senior Director - Strategic Alliances Pfizer, Inc. Global Research & Development
- Ken Pelowski Managing Director Pinnacle Ventures, LLC
- Thomas Porter Trillium Ventures
- Rick Snyder Chief Executive Officer Ardesta
- Michael Staebler Partner Pfeffer Hamilton LLP
- Jack Turner Associate Director MIT, Technology Licensing Office
- Carl Stjernfeldt Battery Ventures
- Tom Washing Sequel Venture Partners
- Tom Washing Sequel Venture Partners
- Jeff Williams President and Chief Executive Officer HandyLab

SUPPORTING INNOVATION ORGANIZATIONS

U-M Tech Transfer plays a vital role in many regional, state and national organizations involved in technology transfer and innovation. Our staff members serve on boards and committees of organizations such as:

- Ann Arbor IT Zone
- Ann Arbor SPARK
- Ann Arbor Area Chamber of Commerce
- Association of University Technology Managers
- Assoc. of Michigan Economic Development Corporations
- Midwest Research Corporation
- Michigan Economic Development Corporation
- New Enterprise Forum
- Washtenaw Wireless

In furthering the University’s mission of outreach, U-M Tech Transfer staff members — individually and collectively — lend their support to various community groups and organizations. One example is our holiday gift collection for the Ann Arbor Ronald McDonald House, a “home-away-from-home” for the families of seriously ill children. Another is our annual day of service with Habitat for Humanity.

Celebrate Invention is our annual reception honoring University inventors who have participated in tech transfer activities. Each year U-M Tech Transfer hosts over 350 inventors, entrepreneurs, businesses and community leaders who network among 8-10 kiosks illustrating the latest research discoveries and business concepts.